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Comprehensive Characterization of Environmental Cadmium Toxicity on
Rice, Mouse and Human Urine by Mass Spectrometry-Based Omics Analysis

Ting Zeng'2, Zongwei Cai?*

Cadmium (Cd) is a toxic environmental pollutant that has detrimental effects
on plants, animals and human-beings. Mass spectrometry (MS)-based omics
analysis has been widely applied in providing massive information associated
with environmental pollution.
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Itai-itai victim and the kidney

Figure 1. Cadmium pollution and itai-itai victim

Study 1: Mass spectrometry-based metabolomics investigation on two
different indica rice grains (Oryza sativa L.) under cadmium stress

Figure 2. Field experiment for the selection of low-camium-accumulating rice
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Figure 3. Metabolic pathways from the analysis of WZ11 (A) an
under three different cadmium concentration exposures.
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Figure 4. Relative qd%ntification of metabolites in WZ11 (A) and WCO01 (B)
under three different cadmium concentration exposures. Data are the

mean + SD of n = 3.

Study 2: Integration of omics analysis and atmospheric pressure MALDI
mass spectrometry imaging reveals the cadmium toxicity on female ICR
mouse
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Figure 5. PLS-DA score plots (A) and Metabolic pathways (B) of biomarkers in
mice tissues under cadmium exposure by metabolomics analysis.
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Figure 6. AP-MALDI mass spectrometry imaging of representative lipids from mice
liver tissues under cadmium exposure.
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Figure 7. Proposed metabolic pathway of mice tissues under cadmium exposure by
metabolomics analysis.

Study 3: Urinary metabolic characterization with nephrotoxicity for
residents under cadmium exposure
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Figure 8. ROC curve analysis of urine from (A) female and (B) male residents in
high-polluted, low-polluted and control areas under cadmium exposure.

Two contrasting indica rice grains under cadmium stress were subjected to mass
spectrometry-based metabolomics analysis for the first time.

The systematic metabolomics study on female ICR mice tissues including liver,
Kidney, heart, stomach, brain as well as spleen under cadmium exposure was
firstly conducted and lipidomic characterizations on female ICR mice liver, kidney
and heart were further constructed step by step.

To deeply understand its toxicological mechanisms, several representative lipids
on the mouse liver were visualized by AP-MALDI MSI.

* A mass spectrometry-based metabolomics investigation on urine from a cohort of
144 volunteers was conducted to explore sex-specific metabolic alteration and to
screen biomarkers related to cadmium-induced nephrotoxicity.

These insights could enhance knowledge in cadmium toxicity of public health and
guide risk assessment in the future
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